Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Virol ; 93(3): 1581-1588, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196480

ABSTRACT

The papain-like protease (PLpro ) is an important enzyme for coronavirus polyprotein processing, as well as for virus-host immune suppression. Previous studies reveal that a molecular analysis of PLpro indicates the catalytic activity of viral PLpro and its interactions with ubiquitin. By using sequence comparisons, molecular models, and protein-protein interaction maps, PLpro was compared in the three recorded fatal CoV epidemics, which involved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome CoV (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV). The pairwise sequence comparison of SARS-CoV-2 PLpro indicated similarity percentages of 82.59% and 30.06% with SARS-CoV PLpro and MERS-CoV PLpro , respectively. In comparison with SARS-CoV PLpro , in SARS-CoV-2, the PLpro had a conserved catalytic triad of C111, H278, and D293, with a slightly lower number of polar interface residues and of hydrogen bonds, a higher number of buried interface sizes, and a lower number of residues that interact with ubiquitin and PLpro . These features might contribute to a similar or slightly lower level of deubiquitinating activity in SARS-CoV-2 PLpro. It was, however, a much higher level compared to MERS-CoV, which contained amino acid mutations and a low number of polar interfaces. SARS-CoV-2 PLpro and SARS-CoV PLpro showed almost the same catalytic site profiles, interface area compositions and polarities, suggesting a general similarity in deubiquitination activity. Compared with MERS-CoV, SARS-CoV-2 had a higher potential for binding interactions with ubiquitin. These estimated parameters contribute to the knowledge gap in understanding how the new virus interacts with the immune system.


Subject(s)
COVID-19/pathology , Coronavirus Papain-Like Proteases/metabolism , Middle East Respiratory Syndrome Coronavirus/enzymology , SARS-CoV-2/enzymology , Severe acute respiratory syndrome-related coronavirus/enzymology , Amino Acid Sequence , Catalytic Domain/physiology , Humans , Models, Molecular , Polyproteins/biosynthesis , Polyproteins/genetics , Sequence Alignment , Severe Acute Respiratory Syndrome/pathology , Ubiquitin/metabolism , Viral Proteins/biosynthesis , Viral Proteins/genetics
2.
J Biomol Struct Dyn ; 39(14): 5129-5136, 2021 09.
Article in English | MEDLINE | ID: covidwho-619732

ABSTRACT

SARS-CoV-2 or Coronavirus disease 19 (COVID-19) is a rapidly spreading, highly contagious, and sometimes fatal disease for which drug discovery and vaccine development are critical. SARS-CoV-2 papain-like protease (PLpro) was used to virtually screen 1697 clinical FDA-approved drugs. Among the top results expected to bind with SARS-CoV-2 PLpro strongly were three cell protectives and antioxidants (NAD+, quercitrin, and oxiglutatione), three antivirals (ritonavir, moroxydine, and zanamivir), two antimicrobials (doripenem and sulfaguanidine), two anticancer drugs, three benzimidazole anthelmintics, one antacid (famotidine), three anti-hypertensive ACE receptor blockers (candesartan, losartan, and valsartan) and other miscellaneous systemically or topically acting drugs. The binding patterns of these drugs were superior to the previously identified SARS CoV PLpro inhibitor, 6-mercaptopurine (6-MP), suggesting a potential for repurposing these drugs to treat COVID-19. The objective of drug repurposing is the rapid relocation of safe and approved drugs by bypassing the lengthy pharmacokinetic, toxicity, and preclinical phases. The ten drugs with the highest estimated docking scores with favorable pharmacokinetics were subjected to molecular dynamics (MD) simulations followed by molecular mechanics/generalized Born surface area (MM/GBSA) binding energy calculations. Phenformin, quercetin, and ritonavir all demonstrated prospective binding affinities for COVID-19 PLpro over 50 ns MD simulations, with binding energy values of -56.6, -40.9, and -37.6 kcal/mol, respectively. Energetic and structural analyses showed phenformin was more stable than quercetin and ritonavir. The list of the drugs provided herein constitutes a primer for clinical application in COVID-19 patients and guidance for further antiviral studies.Communicated by Ramaswamy H. Sarma.


Subject(s)
Anthelmintics , COVID-19 , Anti-Bacterial Agents , Antioxidants , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Repositioning , Humans , Molecular Docking Simulation , Papain , Peptide Hydrolases , Prospective Studies , SARS-CoV-2
3.
J Med Virol ; 92(6): 660-666, 2020 06.
Article in English | MEDLINE | ID: covidwho-7544

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging disease with fatal outcomes. In this study, a fundamental knowledge gap question is to be resolved by evaluating the differences in biological and pathogenic aspects of SARS-CoV-2 and the changes in SARS-CoV-2 in comparison with the two prior major COV epidemics, SARS and Middle East respiratory syndrome (MERS) coronaviruses. METHODS: The genome composition, nucleotide analysis, codon usage indices, relative synonymous codons usage, and effective number of codons (ENc) were analyzed in the four structural genes; Spike (S), Envelope (E), membrane (M), and Nucleocapsid (N) genes, and two of the most important nonstructural genes comprising RNA-dependent RNA polymerase and main protease (Mpro) of SARS-CoV-2, Beta-CoV from pangolins, bat SARS, MERS, and SARS CoVs. RESULTS: SARS-CoV-2 prefers pyrimidine rich codons to purines. Most high-frequency codons were ending with A or T, while the low frequency and rare codons were ending with G or C. SARS-CoV-2 structural proteins showed 5 to 20 lower ENc values, compared with SARS, bat SARS, and MERS CoVs. This implies higher codon bias and higher gene expression efficiency of SARS-CoV-2 structural proteins. SARS-CoV-2 encoded the highest number of over-biased and negatively biased codons. Pangolin Beta-CoV showed little differences with SARS-CoV-2 ENc values, compared with SARS, bat SARS, and MERS CoV. CONCLUSION: Extreme bias and lower ENc values of SARS-CoV-2, especially in Spike, Envelope, and Mpro genes, are suggestive for higher gene expression efficiency, compared with SARS, bat SARS, and MERS CoVs.


Subject(s)
Betacoronavirus/genetics , Cysteine Endopeptidases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Nucleocapsid Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Animals , Base Sequence , Betacoronavirus/classification , Betacoronavirus/pathogenicity , COVID-19 , Chiroptera/microbiology , Codon Usage , Computational Biology , Coronavirus 3C Proteases , Coronavirus Envelope Proteins , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cysteine Endopeptidases/metabolism , Eutheria/microbiology , Gene Expression , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/metabolism , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Sequence Homology, Nucleic Acid , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL